RF System Design

Peter Kinget

Bell Laboratories Lucent Technologies Murray Hill, NJ, USA

Outline

- · Circuits for Wireless
- Wireless Communications
 - duplex, access, and cellular communication systems
 - standards
- Receivers:
 - heterodyne
 - homodyne
 - image reject
- Transmitters
 - modulation
 - up-conversion
- Transceivers
 - frequency synthesis
 - examples

Circuits for Wireless

Circuits for Wireless - Overview

- Noise limits the smallest signal
 - · noise figure
 - · cascade of stages
- Distortion limits the *largest* signal
 - large (interfering) signals:
 - · compression, blocking, and desensitization
 - inter-modulation
 - · cascade of stages
- Dynamic Range

© Peter KINGET 03/99 Page5

Noise Figure

• Max. thermal noise power from linear passive network e.g. antenna: $N_{max} = kT \cdot BW$

• Noise Factor:
$$F = \frac{(S/N)_{in}}{(S/N)_{out}} = 1 + \frac{N_{eq@input}^{added}}{N_{in}}$$

• Noise Figure: $NF = 10 \log_{10}(F) \ge 0dB$

NF	F	
[dB]		
0	1	
1	1.25	$(S/N)_{out} = 1/2 (S/N)_{in}$
2	1.6	70dt
3	2	

Cascade of Stages: Friis Equation

Avail. Power Gain: A_{p1} Noise factor:

$$F = 1 + (F_1 - 1) + \frac{(F_2 - 1)}{A_{P1}} + \frac{(F_3 - 1)}{A_{P1}A_{P2}}$$

later blocks contribute less to the noise figure if they are preceded with gain

© Peter KINGET 03/99 Page7

Noise of lossy passive circuit

- E = Loss• Lossy passive circuit (e.g. filter):
- E.g. Band-select filter & LNA:

$$F = F_{filt} + \frac{(F_{LNA} - 1)}{A_{D}}$$

$$F = L + \frac{(F_{LNA} - 1)}{1/L} = L \cdot F_{LNA}$$

Loss adds immediately to noise figure!

Sensitivity

• sensitivity = minimal signal level that receiver can detect for a given (S/N) at the output:

$$F = \frac{(S/N)_{in}}{(S/N)_{out}} = \frac{P_{signal_in}}{P_{noise_in}} \cdot \frac{1}{(S/N)_{out}}$$

$$P_{\text{signal}_{\text{in}}} = F \cdot (S / N)_{\text{out}} \cdot P_{\text{noise}_{\text{in}}}$$
$$= F \cdot (S / N)_{\text{out}} \cdot kT \cdot BW$$

• E.g. GSM (BW=200kHz, $(S/N)_{out} > 9dB$):

$$P_{\text{signal_in}} = NF + (S/N)_{\text{out}} - 174dBm/Hz + 10log_{10}(BW)$$

= 6 + 10 - 174 + 53 = -105dBm

for a receiver with a noise figure of 6dB

© Peter KINGET 03/99 Page9

Distortion:

$$x_{in} - y_{out}$$

- · Circuits have non-linearities
 - hard: e.g. supply clipping
 - weak: $y_{out} = G_1 \cdot x_{in} + G_2 \cdot x_{in}^2 + G_3 \cdot x_{in}^3 + \Box$

$$G_1 >> G_2 \& G_1 >> G_3$$

- Effects:
 - Gain compression
 - Blocking & Desensitization
 - Inter-modulation: IP2 & IP3
- · Cascade of stages

IIP₃ for a cascade of stages

$$\frac{X_{\text{in}}}{A} = A + \frac{A}{A_{\text{AIIP } 3}} + \frac{A}{A_{\text{B IIP } 3}} + \frac{G_{\text{A1}}^{2}}{A_{\text{B IIP } 3}^{2}} + \frac{G_{\text{A1}}^{2} \cdot G_{\text{B1}}^{2}}{A_{\text{C IIP } 3}^{2}}$$

- worst-case approximation for narrow band systems!
- voltage/current levels and gains
- effect of non-linearities more important at *later stages*!

Spurious Free Dynamic Range

$$dynamic range = \frac{max. input level}{min. input level}$$

- under certain conditions:
 - min. level such that (S/N)_{out} is sufficient
 - max. level such that:effects of non-linearities are ≤ noisei.e. IM3 products ≤ noise
- · other applications use different conditions

© Peter KINGET 03/99 Page15

Spurious Free Dynamic Range

Wireless Communication Systems

Wireless Communications - Overview

- 'ether' is one medium shared by all
- 1st problem: Duplexing
 - how to arrange for a two way communication link
- 2nd problem: Multiple Access
 - how to arrange for multiple users

Duplexing - Overview

- Establish two way communications:
 - Time division duplex:
 - same rcv and xmt frequency channel
 - alternating in time between rcv & xmt
 - Frequency division duplex
 - different frequency channel for rcv and xmt
 - full duplex possible

© Peter KINGET 03/99 Page19

Time Division Duplex (TDD)

- peer to peer communications
- antenna switch

TDD design issues

- + mobile units can communicate
- + Switch low loss (<1dB)
- + XMT cannot desensitize RCV
- nearby XMT can overload RCV
- + channel leakage from P/A reduction by proper timing
- packet based communication:
 - Synchronization & Buffering needed
 - digital implementation

© Peter KINGET 03/99 Page21

Frequency Division Duplex (FDD)

- base station <> mobile unit
- no peer to peer communication
- duplex filter

FDD design issues

- duplexer loss (2~3dB)
 - adds directly to noise figure
 - reduces XMT efficiency
- duplexer isolation < ~50dB
 - still desensitization of RCV by XMT possible
- + less sensitive to nearby XMT
- direct XMT antenna connection
 - LO transients or P/A switch results in channel leakage
- + analog implementation

© Peter KINGET 03/99 Page23

Multiple Access - Overview

- Frequency Division Multiple Access (FDMA)
 - divide band in channels & allocate different channel for each user
- Time Division Multiple Access (TDMA)
 - same channel for different users but each user accesses in a different time-slot
- Code Division Multiple Access (CDMA)
 - all users use same channel at same time but have a different code
- Carrier Sense Multiple Access (CSMA)
 - all users use same channel at different (random) times

- each user is assigned a channel
- FDD & FDMA → xmt & rcv channel
- + implementation can be done analog
- you need high quality filters (loss....)

© Peter KINGET 03/99 Page25

Time Division Multiple Access (TDMA)

- each user is assigned a slot
- synchronization & data buffering → digital
- + add coding, correction, compression → capacity 1
- + FDD & TDMA:

time RCV & XMT non-simultaneous

→ advantages of TDD

Code Division Multiple Access (CDMA)

- · each user has different code
 - ~ speaks different language
- Direct Sequence Spread Spectrum
 - code used to encode data
- Frequency Hopping Spread Spectrum
 - code used to select frequency sequence

© Peter KINGET 03/99 Page27

Carrier sense multiple access (CSMA)

- · sense medium before transmit
 - if free, transmit information
 - if collision, back-off and re-send information
- system implications similar to TDMA
- BUT,
 - + no synchronization necessary
 - no guaranteed bandwidth
 - used for data communications e.g. wireless LAN

Cellular Communications System

- large number of users
- · cellular system
 - stations far enough
 - → frequency reuse
 - far ~ transmitted power
- Co-channel interference
 - a distance 2 co-channel cells/cell radius
 - power independent
 - 7 reuse: ratio = 4.6 (18dB)
- Base-station & mobile unit
 - forward/up link: base → mobile
 - reverse/down link: mobile → base
 - hand-off: switch base stations

© Peter KINGET 03/99 Page29

Channel characteristics

- Path-loss:
 - propagation characteristics
- Multi-path fading:
 - direct & reflected signals interfere at rcv
- · Delay Spread:
 - direct & delayed signals interfere
 - fast & large variations in signal strength in moving receiver
 - "frequency blocking" in stationary receiver

Standards - Some Examples

- Advanced Mobile Phone Service (AMPS)
- North American Digital Standard (NADS) IS-54
- IS-95 DS CDMA Qualcomm CDMA
- Global System for Mobile Communications (GSM)
- Digital Enhanced Cordless Telephone (DECT)
- IEEE 802.11
- HiperLAN
-

© Peter KINGET 03/99 Page31

GSM

- Global System for Mobile Communications
- FDD:
 - RCV: 935-960 MHzXMT: 890-915 MHz
- FDMA & TDMA:
 - 200 kHz Channels
 - frame = 8 slots: 4 rcv & 4 xmt
 - RCV & XMT slot offset by 3 time slots
 - data rate ~ 270kbits/sec
- GMSK modulation
 - constant envelope BT=0.3

GSM Type approval (summary)

- Receiver
 - BER ~10⁻³ or S/N @ demodulator > 9dB
 - signal range: -102dBm to -15dBm

for signal of -99dBm:

blocking: in band: -43 up to -23dBm

out of band: 0dBm

- inter-modulation: -49dBm @800kHz & @1600kHz

for signal of -82dBm:

- co-channel test: 9dB smaller interferer in same channel
- adjacent channel (@200kHz): 9dB larger
- alternate channel (@400kHz): 41dB larger

© Peter KINGET 03/99 Page33

GSM Type approval (summary)

- close-in: modulation spectrum (spectral mask)
- wide-band: noise spectrum e.g.
 - noise@3MHz < -115dBc/Hz
 - noise@6MHz < -130dBc/Hz
 - noise@25MHz < -130/-136dBc/Hz
- average phase error < 5 deg.RMS
- output power
 - up to 2-3 Watt: 33-35dBm
 - power control: 28dB
- carrier leakage < 40dBc

Receivers

- small signal: down to -102dBm
- narrow band signal: 200kHz on ~900MHz
- very hostile environment → interference
 - e.g. blocking signals ~100dB larger than signal !!

Filter as RCV

- e.g. GSM fo=900MHz BW=200kHz
- Quality factor: ~4500
 - high Q → high loss → high NF
- · High rejection & sharp filter
- Tunable filter
 - center frequency accuracy

No Filter Technology available

© Peter KINGET 03/99 Page37

Heterodyne Receiver

- down-convert signal to lower fixed intermediate frequency (IF) for filtering
 - → Q lower
 - → fixed frequency
- Mixer

$$_{-} \quad z_{out} \ = K \cdot x_{in} \cdot y_{in}$$

– frequency translation:

•
$$x_{in}@\omega_1 \& y_{in}@\omega_2 \Rightarrow z_{out}@|\omega_2 +/- \omega_1|$$

– conversion gain:

• CVG =
$$z_{out} / x_{in} = K \cdot y_{in}$$

Heterodyne Receiver: IMAGES

- $f_o + f_{IF} & f_o f_{IF}$ mix with fo to same f_{IF}
- potential interference
- add IMAGE REJECT FILTER before mixer

© Peter KINGET 03/99 Page39

Heterodyne: choice of IF

- high IF + more relaxed image filter
 - + smaller IF filter
 - higher Q → higher loss
- multiple IFs: distribute channel filtering
- · filter-amplify-filter-amplify
- gain at different frequencies: no oscillation risk

Mixer Spurious Responses

- image frequency
- feed-through to IF: (LO → IF and RF → IF)
- mixer: never only second but also higher order
 - e.g. spurious response table for double balanced mixer

			f_{LO}	2f _{LO}	3f _{LO}	4f _{LO}	5f _{LO}	6f _{LO}
6	f_{RF}	-100	-92	-97	-95	-100	-100	-95
5	f_{RF}	-90	-84	-86	-72	-92	-70	-95
		-90						
3	f_{RF}	-75	-63	-66	-72	-72	-58	-86
		-70						
1	f_{RF}	-60	0	-35	-15	-37	-37	-45
			-60	-60	-70	-72	-72	-62

frequency planning

© Peter KINGET 03/99 Page41

Frequency Planning: spurious responses

- e.g. low side injection difference mixer
 - $-f_{IF}=f_{IO}-f_{RF}$
 - e.g. GSM RCV

• RF in: 925-960MHz

• IF: 71MHz

• LO: 996-1031MHz

- find all spur frequencies f_s
 - $|n f_s| +/- m f_{LO}| = f_{IF}$

- n: 0, 1, 2; m: 0, 1, 2,

Band-limited signal: Complex envelope

Homodyne Receiver

- $f_{IO} = f_{RF} \rightarrow f_{IF} = 0$
- image=signal
- · quadrature down-converter
- lowpass filter does channel selection

© Peter KINGET 03/99 Page47

Homodyne design issues (1)

- Lowpass filters for channel selection
 - can be integrated on IC
 - high dynamic range required
 - preceded by limited gain or filtering
 - a lot of (programmable) gain at DC
 - parasitic feedback can cause stability problems
 - DC offset
 - 1/f noise

Homodyne design issues (2)

- Time-varying DC offsets
 - self-mixing
 - LO leakage
 - RF leakage
- LO emission
- I/Q mismatches

© Peter KINGET 03/99 Page49

Homodyne design issues (3)

- Even order distortion
 - IM2@LNA -> LF signal -> mixer RF/IF feed-through
 - IM2@Mixer -> LF signal & DC
 - differential circuits
 - but P/A single-ended -> antenna SE -> LNA SE
 - single-ended to differential conversion at RF

Why not for IF

- · Passive IF filters: high DR
- DC offset out of band: ac coupling
- IM2 out of band: ac coupling
- @IF 1/f noise low DC offset out of band
- $f_{LO} = f_{RF} + /- f_{IF}$: emission filtered
- · Modern IF: zero-IF back-end to go into DSP

© Peter KINGET 03/99 Page51

Image Reject Receiver: Hartley

- no IMR filter
- image rejection depends on
 - quadrature accuracy
 - gain matching
- 90 degrees shift in signal path

Image Reject Receiver: Weaver

- use 2nd quadrature mixing stage instead of 90deg. shift
- additional secondary image

© Peter KINGET 03/99 Page53

Transmitters

Transmitters - Overview

- Basic functions:
 - modulation:
 - encode the information on a waveform's amplitude, phase or frequency
 - up-conversion:
 - move signal to desired RF carrier frequency
 - power amplification
 - amplify signal to deliver wanted power to antenna for emission

© Peter KINGET 03/99 Page55

Direct VCO modulation

- · only constant envelope modulation
- VCO in open loop during XMT
 - frequency drift
 - pushing/pulling
 - close-in VCO noise
 - switch time XMT/RCV includes lock time
- compact

Quadrature Modulator

- Any modulation format
 - see complex envelope
- · But unwanted sideband when
 - non perfect quadrature
 - gain mismatches

© Peter KINGET 03/99 Page57

Quadrature modulator: Side-band rejection

Multi-step Up-conversion

- · good image reject filter necessary
- · potential for other spurs
- extra filter to reject broadband noise

© Peter KINGET 03/99 Page59

Direct Up-conversion

- · no IF and no spurs: relaxed filtering
- extra filter to reject broadband noise
- potential RF VCO re-modulation by P/A out
 VCO shielding
- · quadrature RF signal required

Indirect VCO modulation

- · only constant envelope modulation
- loop filter BW > signal BW
- · low broadband noise!
- Tx-VCO: high power & low noise (e.g. P_{out} 10dBm typ. in GSM)
- · potential for spurs

© Peter KINGET 03/99 Page61

Power amplifier & output filters

- TDD: P/A switch antenna
 - ~1dB loss in switch
- FDD: P/A duplexer antenna
 - ~2-3dB loss in switch
 - 30-50% of P/A power dissipated in duplexer
- average efficiency P/A << 50%
 - depends strongly on modulation format
- $P_{out}/P_{DC} << 25\%$

Transceiver design

Frequency Synthesizer

• 3rd subsystem in transceiver

- RCV:
 - phase noise level in side bands
 - discrete spurs
- XMT:
 - RMS phase error
 - = integrated phase noise
 - wideband noise
 - discrete spurs

Transceiver Design

- Meet the standard !!!!
- Architecture selection and system design
 - Bill of materials
 - Frequency planning:
 - # VCOs & spurious responses
 - Power consumption:
 - Transmitter (P/A) talk time
 - · Receiver standby time
 - Partioning
 - Hardware/Software
 - Analog/Digital
- · Time to market & Price & Package

Recent Transceiver Architectures

- Some Trends:
 - integration & cost reduction
 - dual band
 - multi standard
- Some Techniques
 - Zero-IF
 - Low-IF
 - Double Low-IF
 - Wide-band-IF
 - IF sampling
 - Δ - Σ decimation filter as channel select
 - Software Radio

-

© Peter KINGET 03/99 Page67

Acknowledgments

- I would like to thank the following colleagues for stimulating discussions:
 - Kirk Ashby, Mihai Banu, Paul Davis, Jack Glas, Venu Gopinathan